Chủ Nhật, Tháng Một 29, 2023
  • Hướng dẫn
  • Mẹo vặt
  • Dịch vụ
  • Lý thuyết
  • Phần mềm
  • Scopus
  • Kiểm định
Dịch vụ phân tích và xử lý số liệu
  • Home
  • Thông tin
  • Về chúng tôi
  • Báo giá
  • Liên hệ
  • Login
No Result
View All Result
Dịch vụ phân tích và xử lý số liệu
Home Hướng dẫn

Dự báo ARIMA trên EViews

admin by admin
09/05/2019
in Hướng dẫn, Video
0
0
SHARES
325
VIEWS
Share on FacebookShare on Twitter

Mục lục trang:

  • DỰ BÁO ARIMA TRÊN EVIEWS
    • Mô hình ARIMA là gì ?
    • Có thể bạn cũng thích
    • Cách lựa chọn FEM REM OLS trong hồi quy dữ liệu bảng PANEL
    • Phân tích dữ liệu đa hợp CoDA – Compositional Data Analysis
    • Ứng dụng thuật toán phân loại Naïve Bayes
    • Chạy mô hình cấu trúc vectơ tự hồi quy SVAR
    • Cấu hình mô hình ARIMA
    • Phần mềm dự báo ARIMA
    • Các bước dự báo arima
      • Xác định chuỗi ổn định
      • Giản đồ tự tương quan ( correlagram)
    • Ước lượng mô hình ARIMA
    • Dự báo bằng mô hình ARIMA
    • Kiểm định mô hình
      • Kiểm định phần dư phân phối chuẩn
      •  Kiểm định tính ổn định phần dư

Dự báo ARIMA trên EViews, hướng dân cách dự báo các phần mềm kinh tế có độ nhạy cao như: giá cả, các chỉ số kinh tế như GDP, CPI, IF …. đây là một công cụ hữu ích để dự báo và dự đoán tình hình kinh tế trong ngắn hạn; Công cụ này chỉ phù hợp dùng cho vĩ mô.

DỰ BÁO ARIMA TRÊN EVIEWS

Mô hình ARIMA là gì ?

Trong thống kê và toán kinh tế , và đặc biệt là trong phân tích chuỗi thời gian , một autoregressive tích hợp trung bình trượt (ARIMA) mô hình là một sự tổng quát của một tự hồi di chuyển trung bình (ARMA) mô hình. Cả hai mô hình này đều phù hợp với dữ liệu chuỗi thời gian để hiểu rõ hơn về dữ liệu hoặc dự đoán các điểm trong tương lai của chuỗi ( dự báo ). Các mô hình ARIMA được áp dụng trong một số trường hợp dữ liệu cho thấy bằng chứng không cố định , trong đó bước khác biệt ban đầu (tương ứng với phần “tích hợp” của mô hình) có thể được áp dụng một hoặc nhiều lần để loại bỏ tính không cố định.

Có thể bạn cũng thích

panel2 120x86 - Dự báo ARIMA trên EViews

Cách lựa chọn FEM REM OLS trong hồi quy dữ liệu bảng PANEL

26/09/2022
CoDA2 120x86 - Dự báo ARIMA trên EViews

Phân tích dữ liệu đa hợp CoDA – Compositional Data Analysis

14/09/2022
naivebayes2 - Dự báo ARIMA trên EViews

Ứng dụng thuật toán phân loại Naïve Bayes

05/09/2022
svar FILEminimizer - Dự báo ARIMA trên EViews

Chạy mô hình cấu trúc vectơ tự hồi quy SVAR

04/06/2022

Phần AR của ARIMA chỉ ra rằng biến quan tâm đang phát triển được hồi quy trên các giá trị bị trễ (nghĩa là trước) của chính nó. Phần MA chỉ ra rằng lỗi hồi quy thực sự là một tổ hợp tuyến tính của các thuật ngữ lỗi có giá trị xảy ra đồng thời và tại các thời điểm khác nhau trong quá khứ. I (cho “tích hợp”) chỉ ra rằng các giá trị dữ liệu đã được thay thế bằng chênh lệch giữa các giá trị của chúng và các giá trị trước đó (và quá trình khác biệt này có thể đã được thực hiện nhiều lần). Mục đích của mỗi tính năng này là làm cho mô hình phù hợp với dữ liệu nhất có thể.

TIN HOT:  hồi qui 3 giai đoạn 3SLS

Các mô hình ARIMA không theo mùa thường được ký hiệu là ARIMA ( p , d , q ) trong đó các tham số p , d và q là các số nguyên không âm, p là thứ tự (số độ trễ thời gian) của mô hình tự phát , d là mức độ của khác biệt (số lần dữ liệu đã bị trừ đi các giá trị trong quá khứ) và q là thứ tự của mô hình trung bình di chuyển . Các mô hình ARIMA theo mùa thường được ký hiệu là ARIMA ( p , d , q ) ( P , D , Q )m , trong đó m đề cập đến số lượng thời gian trong mỗi mùa và chữ hoa P , D , Q đề cập đến các thuật ngữ trung bình tự động, khác biệt và di chuyển cho phần theo mùa của mô hình ARIMA.

Khi hai trong ba thuật ngữ là số không, mô hình có thể được tham chiếu dựa trên tham số khác không, bỏ “AR”, “I” hoặc “MA” từ viết tắt mô tả mô hình. Ví dụ: ARIMA (1,0,0) là AR (1), ARIMA (0,1,0) là I (1) và ARIMA (0,0,1) là MA (1).

Các mô hình ARIMA có thể được ước tính theo cách tiếp cận BoxTHER Jenkins .

Cấu hình mô hình ARIMA

Box và Jenkins (1976) là những người đầu tiên giới thiệu các mô hình ARIMA, trong đó:

AR= Autogressive (tự hồi quy), lấy giá trị q

I= Integrated ( Chuỗi ổn định sau khi chuyển sang dạng sai phân), lấy giá trị d

MA = Moving average ( bình quân di động), lấy giá trị p

Phần mềm dự báo ARIMA

Mô hình ARIMA là một trong những mô hình dự báo phổ biến nên có rất nhiều phần mềm thống kê có thể làm được như: dự báo arima trên phần mềm thống kê spss, mô hình arima trong R, dự báo kinh tế bằng mô hình ARIMA trong ứng dụng kinh tế Stata … Nhưng trong phần này, chúng tôi Hướng dẫn dự báo ARIMA trên phần mềm Eviews 10.

TIN HOT:  nhận biết dữ liệu định lượng

Các bước dự báo arima

Xác định chuỗi ổn định

Ở đây chúng tôi lấy ví dụ cụ thể có các bạn dễ hiểu là chúng tôi cần dự báo giá nhà ở trong những năm tiếp theo thì có những biến động như thế nào; Để xác đinh chuổi ổn định ta sử dụng Unit root test, được cấu hình như trong hình sau:

unitroottest 300x249 - Dự báo ARIMA trên EViews

Ta được kết quả chuỗi dừng sau khi sai phân bậc 1 => d =1, kết quả trong bảng sau:

ketqua unitroottest 300x132 - Dự báo ARIMA trên EViews

Để biết là chuỗi (data) của chúng ta đã ổn định hay chưa ? chúng ta dùng chỉ số Test Critical values:  1% level có giá trị tuyệt đối so sánh với giá trị tuyệt đối của t-Statistic, nếu nó nhỏ hơn tức là chuỗi đã ổn định tại mức sai phân.

Ngoài dùng kiểm nghiệm unit root test chúng ta có thể dùng biểu đồ để nhận biết chuỗi dữ liệu có ổn định hay chưa?

Giản đồ tự tương quan ( correlagram)

Ta dùng giản  đồ tự tương quan để xác định 2 chỉ số quan trong tiếp theo đó là q và p của ACF và PACF hay còn gọi là AC và PAC tương đương với Autocorrelation và Partial Correlation trong biểu đồ tự tương quan.

correlation 300x263 - Dự báo ARIMA trên EViews

Nếu dùng lý thuyết để tìm giá trị q và p thì nhiều bạn không hiểu và khó có thể thực hiện được; Trong trường hợp này chúng tôi hướng dẫn các bạn dùng “trực quan” để nhận biết giá trị q &p trong giản đồ tự tương quan.

TIN HOT:  Cách tính giá trị các chỉ số AIC BIC MAE MAPE MSE RMSE

Tại cột AC ta dễ dàng nhận thấy rằng tại lag(1), chỉ duy nhất tại lag(1) có gái trị vượt qua ranh giới hạn ( nét đứt), và có giá trị ý nghĩa thống kê với P-value <0.05. Ta chọn q =1.

Tại cột PAC ta thấy có quá nhiều vị trí lag mà làm cho giá trị PAC vượt qua ranh giới; Tại vị trí lag(1) ta có giá trị PAC vượt qua giới hạn nhiều nhất, nên ta chọn p=1.

Ước lượng mô hình ARIMA

Thực chất của mô hình dự báo arima là sử dụng nhiều mô hình sự báo, bao gồm AR(p), MA(q), ARMA(p,q) và ARIMA(p,d,q).

Kết quả ước lượng mô hình arima(1,1,1) ta được như sau:

arima111 300x278 - Dự báo ARIMA trên EViews

Ta có thể sử dụng câu lệnh:

ls d(giadv) c ar(1) ma(1)

hay chức năng:

Proc > Automatic ARIMA Forecasting

Điều cho ra kết quả như trên.

Dự báo bằng mô hình ARIMA

Với mô hình này, thì việc ước lượng mô hình nó chỉ là cộng cụ để giúp chúng ta dự báo; Vì vậy, bây giờ chúng ta dự báo mô hình cho đơn vị thời gian tiếp theo;

Chúng ta đặt giả thuyết là cần phải dự báo giá nhà đất (giadv)  cho kỳ tiếp theo sẽ là bao nhiêu ?

forecasting 300x136 - Dự báo ARIMA trên EViews

Bấm vào chức năng forecasting trong bảng Equation

Kiểm định mô hình

Để sử dụng được kết quả dự báo chúng ta cần phải kiểm định mô hình cho phù hợp

Kiểm định phần dư phân phối chuẩn

phandu01 300x137 - Dự báo ARIMA trên EViews

Từ đồ thị trên chúng ta có thể khẳng định rằng phần dư có phân phối chuẩn; Ngoài dùng đồ thị, chúng ta còn dùng có thể dùng kiểm định khác.

 Kiểm định tính ổn định phần dư

phandu2 300x134 - Dự báo ARIMA trên EViews

Từ kết quả trên cho thấy phần dư có tính ổn định

Sau khi kiểm định phần dư xong, thì chúng ta có thể sử dụng được kết quả dự báo trên.

Nếu các bạn muốn tham khảo thêm Hướng dẫn chạy ARIMA trên SPSS thì có thể xem video trên.

Tags: arimadatadự báoEVIEWSkiểm địnhsố liệuspssước lượng
Previous Post

Cách phát hiện dữ liệu có phân phối chuẩn

Next Post

Hướng dẫn sử dụng phần mềm PLS SEM

Related Posts

panel2 350x250 - Dự báo ARIMA trên EViews
Hướng dẫn

Cách lựa chọn FEM REM OLS trong hồi quy dữ liệu bảng PANEL

26/09/2022
CoDA2 350x250 - Dự báo ARIMA trên EViews
Kiến thức

Phân tích dữ liệu đa hợp CoDA – Compositional Data Analysis

14/09/2022
naivebayes2 - Dự báo ARIMA trên EViews
Hướng dẫn

Ứng dụng thuật toán phân loại Naïve Bayes

05/09/2022
svar FILEminimizer - Dự báo ARIMA trên EViews
Dịch vụ

Chạy mô hình cấu trúc vectơ tự hồi quy SVAR

04/06/2022
guttman FILEminimizer FILEminimizer - Dự báo ARIMA trên EViews
Hướng dẫn

Cách xây dựng thang đo Guttman Scale

02/06/2022
did FILEminimizer - Dự báo ARIMA trên EViews
Dịch vụ

Hồi quy sai biệt kép Difference in Difference regression

30/05/2022
stata FILEminimizer - Dự báo ARIMA trên EViews
Dịch vụ

Điểm mạnh của nghiên cứu định lượng P3: Đề giải pháp dễ dàng

18/05/2022
rmse - Dự báo ARIMA trên EViews
Dịch vụ

MSE và RMSE là gì và cách tính trên STATA

29/07/2020
Next Post
SmartPLS SEM - Dự báo ARIMA trên EViews

Hướng dẫn sử dụng phần mềm PLS SEM

No Result
View All Result
eview10 360x180 - Dự báo ARIMA trên EViews
Phần mềm

[Tải về] Phần mềm thống kê EViews10 32+64bit

by admin
19/12/2022
0

Tải về phần mềm thống kê EViews10 32+64bit miễn phí cho windows 32 và 64 bit; Đây là phần mềm...

Read more
stata17 120x86 - Dự báo ARIMA trên EViews

[Download] Phần mềm Stata MP 17 64bit cho Windows miễn phí kèm thuốc

10/12/2022
panel2 120x86 - Dự báo ARIMA trên EViews

Cách lựa chọn FEM REM OLS trong hồi quy dữ liệu bảng PANEL

26/09/2022
grelt1 120x86 - Dự báo ARIMA trên EViews

Phần mềm phân tích thống kê miễn phí mà hay GRELT

24/09/2022
spss26 120x86 - Dự báo ARIMA trên EViews

[DOWNLOAD] Phần mềm thống kê SPSS 26 64bit miễn phí

19/12/2022
theoretical1 FILEminimizer 120x86 - Dự báo ARIMA trên EViews

4 Dạng lý thuyết trong nghiên cứu khoa học

15/09/2022
CoDA2 120x86 - Dự báo ARIMA trên EViews

Phân tích dữ liệu đa hợp CoDA – Compositional Data Analysis

14/09/2022
likertscale1 120x86 - Dự báo ARIMA trên EViews

Thang đo Likert 5 bậc vs khảo sát 7 bậc; Ai tốt hơn ?

12/09/2022
vhlss3 FILEminimizer - Dự báo ARIMA trên EViews

[Download] Dữ liệu điều tra mức sống hộ gia đình 2020 FREE

12/09/2022
naivebayes2 - Dự báo ARIMA trên EViews

Ứng dụng thuật toán phân loại Naïve Bayes

05/09/2022
nn2 - Dự báo ARIMA trên EViews

Nhận dự báo với mạng thần kinh – Neural Networks

04/09/2022
svar FILEminimizer - Dự báo ARIMA trên EViews

Chạy mô hình cấu trúc vectơ tự hồi quy SVAR

04/06/2022
  • Hướng dẫn
  • Mẹo vặt
  • Dịch vụ
  • Lý thuyết
  • Phần mềm
  • Scopus
  • Kiểm định

© 2023 JNews - Premium WordPress news & magazine theme by Jegtheme.

No Result
View All Result
  • Home
  • Thông tin
  • Về chúng tôi
  • Báo giá
  • Liên hệ

© 2023 JNews - Premium WordPress news & magazine theme by Jegtheme.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In